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   Traditional Computable General Equilibrium (CGE) models do not have 
explicitly modeled money markets as they take money as neutral consistently 
with the Walrasian framework. Due to the absence of money markets, these 
models typically omit the formulation of an interest rate variable. It is argued 
in the paper that this omission affects the usefulness of the CGE framework 
negatively, especially in the analysis of the general equilibrium impact of 
macro shocks. A formulation is suggested here to allow for an endogenous 
determination of interest rate within a simple, Walrasian general equilibrium 
model that is analytically solvable. The step-by-step development of the 
model starting from simpler models includes relevant features of the 
traditional models in the CGE literature. 

 
    The comparative static effects of an exogenous increase in the propensity 

to save coefficient are investigated to observe the behavior of formulated 
interest rate variable in response to shocks. The implications of results are 
discussed. In particular, the directional uncertainty concerning the 
comparative static effect on the interest rate is shown to be resolved by 
considering the factor intensities of production in different sectors. 

 
 Key Words:  Interest Rates, Walrasian Models, Computable General  

 Equilibrium Modeling, Savings Rates. 

 
     * The author expresses thanks to Richard Carlson for stylistic comments, and to Pelin Kale for 

proofreading and rechecking the derivations, without implication for any errors that might have 
remained. 



Introduction 
 
Increasing degree of non-linearity and the number of endogenous variables/equations makes 

it difficult, if not impossible, to find analytical solutions to systems of non-linear equations. 

A CGE model can be viewed, in purely mathematical terms, as a simultaneous system of 

non-linear equations for which it is impossible to find an analytical solution. Solution of 

these models, therefore, requires the use of numerical techniques. Advances in computing 

technology and the introduction of canned software capable of providing numerical solutions 

for large non-linear systems have substantially increased the popularity of CGE models in 

the last decade or so. Nonetheless, these models remain "puzzling black boxes," as B. 

Bolnick once put it, for large numbers of students and practitioners. Constructing 

analytically solvable models that mimic certain features of large applied models would not 

only help one better understand the structure of larger models but also facilitate an under-

standing of the underlying adjustment mechanisms to exogenous shocks. 

 This paper first presents an analytical solution to a very simple, 2x2 general 

equilibrium model in the Walrasian tradition under the assumption that there is no savings in 

the economy. The 2x2 model is then modified to allow for savings. The modified model 

incorporates investment behavior using a capital composition matrix so as to mimic the 

treatment of investment in traditional, static CGE models in the literature. It is shown, within 

the context of this model, how the solution, once obtained, can be used for an analytical 

investigation of the comparative-statics effects of an exogenous change in the marginal 

propensity to save (mps) parameter. The purpose of this exercise is both to illustrate the 

simulation experimentation with CGE models and to lay the groundwork for a discussion of 

the treatment of interest rates in the applied literature. 

 It is suggested in the paper that despite the Walrasian neutrality of money, an interest 

rate variable can be introduced to the model under certain assumptions. In particular, the 

assumption of the perfect mobility of capital between sectors can be taken to imply the 

existence of a perfect market in existing capital stock. In turn, the existence of such a market 

can be viewed as a substitute for a money market not incorporated into the model as the 

(durable) capital goods now act as stores of value --thereby replacing money as a store of 

value. Based on this line of reasoning, a formulation allowing for the endogenous 

determination of an interest rate is added to model equations. The comparative-statics 
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experimentation for an exogenous change in the mps is repeated with the model version that 

includes the interest rate formulation, and results are discussed. 

 
A Simple Walrasian General Equilibrium Model 
 
Consider the following simple general equilibrium model for an economy with no 

government and no foreign trade. The Greek characters in the equations (1) through (13) 

represent parameters; small case letters and overlined capital letters stand for exogenous 

variables, and the rest of the symbols are endogenous variables. 

1 1
 

1
 (1- )X  =  L  .Kα α

 (1) 
2 2

 
2
 (1- )X  =  L  .Kβ β

 (2) 
W =  .P .L .K1 1

 ( -1)
1
 (1- )α α α

 (3) 
R =  (1- ). P . L .K1 1

 
1
 -α α α

 (4) 
W =  . P .L .K2 2

 ( -1)
2
 (1- )β β β

 (5) 
R =  (1- ). P . L .K2 2

 
2
 -β β β

 (6) 

L =  L  +  L1 2  (7) 
K =  K  +  K1 2 (8)

1
1

C  =  . Y
P

θ
 (9) 

2
2

C  =  (1- ). Y
P

θ
(10)

Y =  W.L +  R.K  (11)

1 1X  =  C  (12) 
2 2X  =  C  (13)

 

In the economy, two commodities, X1 and X2, are produced by perfectly competitive firms 

which employ Cobb-Douglas type CRS technologies. Equations (1) and (2) represent the 

typical firm's production functions. Each factor of production employed in sector i (iε{1,2}) 

is paid (at the nominal rates of W for labor, and R for capital) according to its marginal 

productivity leading to factor demand functions in equations (3) to (6) where Pi is the 

(competitive) price of commodity i. The economy-wide supply of capital and labor is fixed 
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at K   and L , respectively [equations (7) and (8)], but factors, including capital, are perfectly 

mobile between sectors. 

   On the demand side, a single representative household owning all factors of production 

tries to maximize its utility -- given by a Cobb-Douglas type utility function -- by spending 

all its factor income [equation (11)] on consumption. The problem of the household trying to 

determine the amounts to be consumed of each commodity, Ci , can be formulated as 

YCPCPtosubject
CCCCUMax

=+
= −

2211

)1(
2121

..
.),( θθ

 

the solution of which yields the Marshallian demand functions in (9) and (10). Finally, the 

commodity market equilibrium conditions are represented by equations (12) and (13). 

Walras' Law and Its Implications 

 A simple counting of equations and endogenous variables reveals that the system is 

square --with as many equations as endogenous variables (W, R, Y, Xi, Li, Ki, Ci, Pi with 

iε{1,2}). By Walras' Law,1 however, the number of independent equations is one fewer than 

the number of endogenous variables. To prove that Walras' Law holds in the model, one can 

manipulate equations (1) through (8) to show that 

 P1.X1 + P2.X2 = W. L  + R. K .  

But the RHS of this equation is equal to Y by (11) so that we can write P1.X1+P2.X2=Y 

which is the budget constraint behind the utility maximizing Marshallian demands. But the 

demand functions (9) and (10) imply P1.C1 + P2.C2 = Y which, by (12) and (13), is the same 

as P1.X1 + P2.X2 = Y. Hence, one equation in the system is redundant since equations (1) 

through (8) plus (11) yield the same equation as equations (9) and (10) plus (12) and (13). 

That the system satisfies Walras' Law can also be proven by showing first that equilibrium in 

the first commodity market implies, by (8) and (12), that 

Substituting for Y from (11), and using (7) and (8), we get 
1 1P . X  =  .Y .θ  

1 1 1 1 2 2. X  =  .[(W.L  +  R.K ) +  (W.L  +  R.K )] .P θ 
                                                 
1 By Walras' Law, in a system such as the simple model here, equilibrium in (N-1) of the markets necessarily 
requires that the Nth market is also in equilibrium. This implies that one of the equations is redundant and that the 
system can only be solved for relative prices but not for each sectoral price level. 
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But the first term in brackets is equal to P1.X1 by (1), (3) and (4); and the second to P2.X2 by 

(2), (5) and (6). Hence, we write 

It follows now from (10) that P2.C2 = (1-θ).Y, or equivalently 
1 1 1 1 2 2. X  =  .( P . X  +  P . X ) .P θ 

Summing up the last two equations, we get 
2 2 1 1 2 2.C  =  (1- ).( P . X  +  P . X ) .P θ 

which is equivalent to C2 = X2. Therefore, X1 = C1 ↔ X2 = C2 as Walras' Law states. 

1 1 2 2 1 1 2 2. X  +  P .C  =  [  +  (1- )].( P . X  +  P . X )P θ θ 

 With Walras' Law proven to hold in the model, the number of independent equations 

is observed to be one fewer  than the number of endogenous variables. As the equality of the 

number of independent equations and that of endogenous variables is a necessary condition 

for obtaining a solution, this leaves essentially three options before the model builder trying 

to solve the model. First, one can choose one of the commodities/factors as the numerairé 

and express other nominal variables in terms of the (quantities of) chosen commodity/factor. 

This amounts to fixing one of the commodity/factor prices and makes the number of 

independent equations equal to that of endogenous variables. The second option is the 

addition of an equation defining a price index whose value is constant. That is, 

 ω1.P1 + ω2.P2  = P   

where ωi's are exogenous weight factors and P   is the constant price index, i.e., no-inflation 

benchmark. This approach increases the number of equations by one without adding an 

endogenous variable thereby making the number of independent equations equal to that of 

endogenous variables. Finally, after a slight modification, the model can be solved for 

relative prices and for real (quantity) variables. 

 Under this third option, the nominal income variable, Y, needs to be converted into a 

real income variable. But since there are two commodities, real income must be defined in 

terms of both (the purchasing power over) commodity 1, i.e., Y/P1; and (the purchasing 

power over) commodity 2, i.e., Y/P2. This treatment increases the number of endogenous 

variables by one --as we now have both Y/P1 and Y/P2 instead of Y alone. To accommodate 

this increase in the number of endogenous variables, we replace equation (11) with 



 
 
 5

The resulting system has now 14 equations [equations (1) through (10), (11a), (11b), (12) 

and (13)] in 14 endogenous variables: 4 relative price variables (i.e., W/Pi and R/Pi) and 10 

real (quantity) variables (i.e., Xi, Li, Ki, and Y/Pi). The selection of this last option is more 

directly consistent with the best-known implication of Walras' Law: a Walrasian system can 

determine the relative prices but not the absolute price levels separately. 

Y
P

 =  W
P

.L +  R
P

.K
1 1 1  (11a) 

Y
P

 =  W
P

.L +  R
P

.K
2 2 2  (11b)

The Analytical Solution 

 To solve the system of equations (1) through (13), we write an equivalent but 

downsized formulation as follows: 

K.L.P. = K.LP. )-(1 
2

1)-( 
22

)-(1 
1

1)-( 
1

ββαα βα .1  (14) 
K.L.P).-(1 = K.L).P-(1 - 

2
 
22

- 
1

 
1

ββαα βα .1  (15) 

L =  L  +  L1 2  (16) 
K =  K  +  K1 2 (17)

P
P. = 

K.L
K.L 2

)-(1 
22

)-(1 
11

1

θ
ββ

αα

 (18) 

where )1/( θθθ −= . Solving the system of equations (14) through (18) --five equations in 

five endogenous variables (i.e., Li, Ki and P2/P1), we obtain the reduced forms for 

endogenous variables Li and Ki: 

1L  =  .
( .  +  )

.Lα θ
α θ β  (19a)

2L  =  
( .  +  )

.Lβ
α θ β  (19b)

1K  =  (1- ).
(1- ).  +  (1- )

.Kα θ
α θ β  (20a)

2K  =  (1- )
(1- ).  +  (1- )

.K .β
α θ β  (20b)
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Having found the solution values for Li and Ki, we can solve for P2/P1 using (20). The values 

found can now be used to determine other relative prices (real returns to factors)  -- W/Pi 

from (3) and (5), and R/Pi from (4) and (6); as well as real variables -- Xi from (1) and (2), 

and Y/Pi from (11a) and (11b).2 

 
The Extended Model with Savings 
 
It is now time to introduce savings into the model. To do this, we add the assumption that 

sector 1 is producing a "Final Consumption Good" alone, whereas the (aggregated) output of 

sector 2 can be used for both "Final Consumption" and as an "Investment Good."3 Assuming 

further that total savings is a fixed fraction, mps, of income in the economy, we can write the 

following version of the system of equations (1) through (13). 

1 1
 

1
 (1- )X  =  L  .Kα α

 (21) 
2 2

 
2
 (1- )X  =  L  .Kβ β

 (22) 
W =  .P .L .K1 1

 ( -1)
1
 (1- )α α α

 (23) 
R =  (1- ). P . L .K1 1

 
1
 -α α α

 (24) 
W =  . P .L .K2 2

 ( -1)
2
 (1- )β β β

 (25) 
R =  (1- ). P . L .K2 2

 
2
 -β β β

 (26)

L =  L  +  L1 2  (27) 
K =  K  +  K1 2  (28)

1 1
1

C  =  .(1- mps).Y
P

γ
 (29) 

2 2
2

C  =  .(1- mps).Y
P

γ
 (30) 

Y =  W.L +  R.K (31)

1 1X  =  C  (32) 
2 2 2X  =  C  +  I (33)

                                                 
2 Note that the solution value for nominal income variable, Y, still can not be found while it is possible to find the 
real incomes expressed in terms of (the purchasing power over) commodity 1, Y/P1; and commodity 2, Y/P2; using 
(11a) and (11b), respectively. 
 
3 Even without reference to the aggregation issue, we can cite the usual example of corn whose output can both be 
used for final consumption and as an investment good (i.e., seed), to such a double-use commodity. 
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 The system proven to satisfy Walras Law is a special case with mps=0 and I2=0 of 

the latter system. Hence, it can be shown that this system of equations also satisfies Walras' 

Law.4 I2 here is the component of sector 2's output devoted to investment --as opposed to 

consumption. To be able to determine I2 endogenously, we need to add the following 

equations to the system (21) through (33):5 

 

 
where DKi: investment by sector of destination, 
 PKi: cost of increasing capital stock of sector i by one unit (the price paid by 
       sector i for each unit of investment good purchased from sector 2) 
 mi  : investment share parameters (Σmi = 1), and 
 a2j  : the second row elements of "capital composition matrix."6 

   The system (21) through (38) has 18 equations (17 of which are independent) and 18 

endogenous variables: Xi, Li, Ki, W, R, Y, Pi, Ci, I2, DKi and PKi. To make the number of 

independent equations equal to the number of endogenous variables so as to be able to solve 

the system, we need to choose a numerairé or define an aggregate price index as discussed 

earlier. We choose commodity 1 as the numerairé and set P1=1 to simplify expressions. We 

now downsize the system (21) through (38) -- in a similar way to what was done for the 

simpler model, with P1=1 and write 

                                                 

22 21 1 22I  =  a .DK +  a .DK  (34) 

1 1
1

DK  =  m .mps.Y
PK  (35) 

2 2
2

DK  =  m .mps.Y
PK  (36)

1 21P 2K  =  a . P  (37) 
2 22P 2K  =  a . P (38)

4 Note that consumption function LES coefficients, θ and (1-θ), in the former system have now been replaced by γi 
but this is not a fundamental difference since γ1=1-γ2. 
 
5 For details of this approach to formulation of investment demand, see. Derviş, de Melo and Robinson; or 
Robinson, Kilkenny and Hanson. 
 
6 Note that aij is the amount of sector i's output required to increase sector j's capital stock by one unit. a11=a21=0 
since sector 1 does not produce any investment goods. 
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α βα α β. L .K  =  . P . L .K1
 ( -1)

1
 (1- )

2 2
 ( -1)

2
 (1- )β

 (39) 
(1- ). L .K  =  (1- ). P . L .K1

 
1
 -

2 2
 

2
 -α βα α β β

(40)

L =  L  +  L1 2  (41) 
K =  K  +  K1 2 (42)

1 1
 (1- )

2 2
 (1- ) 2

L .K
L .K

 =  .P
α α

β β
θ

 (43) 

 

Note that the system (39) through (43) is a special case of (14) through (18) with P1=1 and 

θ =γ1(1-mps)/[1-γ1(1-mps)].7 The latter system of 5 equations in 5 endogenous variables (Li, 

Ki and P2) gives the same solution for Li and Ki as in equations (19a) through (20b), except 

that θ now is given by γ1(1-mps). One can proceed to solve for P2 by substituting RHSs of 

(19a) through (20b) in (43). The values obtained for P2, Li and Ki can then be used to solve 

for other variables using equations (21)-(38) as explained earlier. 

 
The Analysis of the Effects of a Change in "mps" 
 
CGE models solved by employing numerical solution techniques are used most commonly 

for simulation experiments designed to investigate the comparative statics effects of a 

change in one or more of the parameters/exogenous variables on (base period/ benchmark) 

equilibrium values of the endogenous variables. An "analytical equivalent" of such an 

investigation can be repeated using the system (21) through (38) to see the effects of changes 

in mps, an exogenous variable. 

To analyze the effects of, say, an increase in mps, i.e., dmps>0, we first substitute the 

solution values for Li and Ki in (43) and rewrite the equation after rearranging terms as 

 

α α

β β
α β β αα α

β β αθ β α θ β
.(1- )
.(1- )

.[ L
( + )

] .[ K
(1- ). +(1- )

]  =  P  .
 (1- )

 (1- )
( - ) ( - )

2

 (43a) 

                                                 
7 Though treating P2/P1 as a single variable is not fundamentally different than choosing commodity 1 as the 
numeraire and setting P1=1, the latter option is chosen to simplify expressions. 
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Taking the natural log of both sides and totally differentiating --with (19a) and (20a) in 

mind, we get 

where p2=dln P2=dP2/P2. We can use (27) and (28) to rewrite (43b) as 

( - ) [ K
K

- L
L

].d  =  p. 1 1
2α β θ

θ  (43b) 

The signs of the first two terms on the left hand side of (43c) are unknown. However, (39) 

and (40) above imply that 

( - )
K.L

.( K .L - K .L ).d  =  p  .1 2 2 1 2
α β θ

θ  (43c) 

Thus, p2 is negatively related to changes in . In other words, the elasticity of P2 with respect 

to  is negative since 

1 2 2 1K .L  =  .1-
1-

.K .L  .β
α

α
β   

- ( - )
K.L

.K .L .d  =  p
2

1 2
α β θ

θ
 .2

 (43d) 

Note that dmps is also negatively related to dθ since 

0 > - ( - )
K.L

.K . L  =  dP
d

.
P

      _ .
2

1 2
2

2

α β
θ

θ α β∀
 (43e) 

Thus, as mps increases,  falls causing a rise in P2. Then, mps is positively related to P2, the 

price for the output of investment good producing sector. It is an easy matter now to show 

that mps is positively related also to PKi for each i as 

d  =  -  
[1- .(1- mps) ]

.dmps .1

1
2θ

γ
γ   

implying that p2=pki where pki=dln PKi=dPKi/PKi. 
i iP 2d K  =  a 2 .dP   

 Having shown the comparative-statics effects of a rise in mps on P2 and PKi, we can 

now take a look at the effects on the use of resources by sectors. Remembering that P1 is 

fixed, an increase in P2 (following dmps>0) will imply a rise in the relative price of 

commodity 2 (in terms of commodity 1). In the context of a Walrasian model, under the 

assumption of perfect mobility of factors, this would result in a pull of resources towards 

sector 2. This is indeed the case since dL2>0 and dK2>0 after the rise in mps. To see this, 

consider the equations below. 
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2 2
1

2
1

2dL  =  -  L
( + )

d  =  L
( + ) [1- (1- mps) ]

dmpsαβ
αθ β

θ
αβ γ

αθ β γ   

2 2
1

2
1

2dK  =  -  (1- )(1- )K
[(1- ) +(1- ) ]

d  =  (1- )(1- ) K
[(1- ) +(1- ) ] [1- (1- mps) ]

dmpsα β
α θ β

θ
α β γ

α θ β γ   

The positive values of dL2/dmps and dK2/dmps imply, together with constant supplies of 

labor and capital (i.e., = d =0), that dL
_
Ld

_
K 1/dmps and dK1/dmps are both negative. 

 To summarize, therefore, an exogenous increase in mps leads to: 

  A rise in the prices paid for commodity 2 by both the final consumers and the 

producers who demand it for investment purposes as a capital good; 

  An increase in the output of commodity 2 --due to the increase in relative price of 

commodity 2 and the resulting resource pull by the sector, i.e., if dL2>0 and dK2>0, then, 

dX2>0 also; and 

  A fall in the output of commodity 1 --due to the fall in its relative price --if dL2>0 

and dK2>0, then, dL1<0 and dK1<0 implying, in turn, that dX2<0. 

 As general equilibrium requires clearance of all markets, i.e., that supply be equal to 

demand, the second result above also points to a rise in the demand for commodity 2. This 

combined with the first result may seem surprising to those used to think in a Marshallian 

partial equilibrium framework, for it implies a  simultaneous increase in both the own price 

of the commodity and the demand for it. One should note, however, that what is increasing 

together with price is total demand for commodity 2 (i.e., the sum of final consumption 

demand and investment demand) and that the final consumption component of the demand 

is still negatively related to price as shown in equation (30). 

 
The Issue of Interest Rates 
 
Since Walrasian models take money as neutral thereby ignoring money market adjustment 

in response to shocks, traditional CGE models in the Walrasian tradition (Derviş, de Melo, 

Robinson; Robinson) do not include an interest rate variable.8 This affects negatively the 

 
8 Recently, a new branch of literature incorporating a financial sector into the CGE models emerged. For a 
discussion on these models, see Robinson. For examples of such models, see Lewis; Díaz-Giménez et.al., or Yeldan. 
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usefulness of the CGE framework in the analysis of the general equilibrium impact of macro 

shocks and often leads to ad hoc interpretations of simulation experiment results.9 

   The formulation suggested below allows for endogenous determination of an interest rate, 

IR, in a CGE model. Though it may appear to be a superfluous addition not affecting the 

fundamental structure of the simple model here,10 it is useful in that it shows the implied 

change in IR that is consistent with the resulting relative price structure following an 

exogenous shock. In general, the incorporation of an endogenous interest rate formulation 

into a CGE model improves the informative capacity of the model in the empirical sense 

even without directly relating IR to any other endogenous variable.11 To the extent that the 

interest rate defined here can be viewed as a proxy for the interest rates in the 

macroeconomic sense, the formulation may help establish a link between Walrasian and 

Keynesian models that are not necessarily compatible (e.g., Rogers; Sargent). It may thus 

prove to be useful especially in the analysis of the effects of macro shocks through large 

CGE models whose analytical solutions are impossible to find. To illustrate the idea, one can 

consider an area where the use of this formulation may increase the relevance of results from 

CGE simulation exercises: The analysis of the effects of budget deficits which has recently 

become the subject of a hot debate in the macroeconomics literature. In this context, the 

formulation provides a way of checking the validity of such arguments as in Adelman and 

Robinson whose analysis of U.S. macro imbalances (Footnote 9) is based on a model that 

does not allow for capital mobility.12  Finally, it illustrates the complications that may arise 

in the comparative statics analysis of the effects of exogenous shocks --here, a change in 

                                                 
 9 Such interpretations about the real interest rate adjustment in the U.S. following the simultaneous growth of 
budget and current account deficits in the 1980s can be found, for example, in Adelman and Robinson. 
 
10  The formulation appears to be superfluous as it consists of the addition of an equation to determine a variab-
le (IR) not used elsewhere in the model. It can be argued, therefore, that the suggested formulation lets the value of 
IR be determined but IR itself does not directly affect the value of any other endogenous variables. Ideally, some 
mechanism for IR to affect other variables (such as "foreign savings" in larger, open economy models) should be 
designed. This is not attempted here to keep the model analytically solvable. In addition, such attempts are argued to 
push the limits of Walrasian framework --see, for example, Robinson. As it is, the formulation adds a constraint 
upon values of capital rentals and capital goods prices without affecting the Walrasian nature of the model as all 
endogenous variables remain homogenous of degree 0 in all prices. 
 
11 It is better to have the extra information on the implied change in IR by simply adding the formulation to a model 
than not being able to obtain that information from the same model. 
 
12 For an empirical investigation for the U.S. economy and a more detailed discussion along these lines, see Sayan, 
Hushak and Tweeten. 
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mps. In particular, the direction of comparative statics effect on the interest rate can not be 

derived with certainty as discussed below.  

The Formulation 

where PK : aggregate price index for capital goods 

IR =  R / PK  (44) 
K 1 1 2 2P  =  .PK  +  .PKε ε  (45) 

  εi : capital good price index weight factors (Σεi = 1) 

 The system with equations (21)-(38) plus (44)-(45) has 20 equations (19 of which 

are independent) and 20 endogenous variables: Xi, Li, Ki, W, R, Y, Pi, Ci, I2, DKi, PKi, PK 

and IR. We can again proceed by choosing commodity 1 as the numerairé so as to fix P1.13 

 The formulation for the interest rate in (45) is based on the assumption of perfect 

mobility of capital between sectors.14 This implies the existence of a perfect market in 

existing capital stock that is taken to substitute for a money market not incorporated into the 

model, as the existence of such a market justifies viewing the (durable) capital goods as 

stores of value thereby replacing money as a store of value. In this case, wealth and savings 

are defined respectively by the holdings and purchases of capital goods. 

 In this framework, the interest rate must be related to the prices of capital goods and 

the rental for capital (as a factor of production) so as to allow for it be determined endoge-

nously. Considering capital goods as perfect substitutes for each other as stores of value, 

investors buy capital goods for their use as stores of value, not for their particular 

characteristics. Perfect substitutability of all capital goods in this sense guarantees that all 

savings will be invested in the capital good with the highest yield until all interest rates are 

equalized (Keller). Then, we must have 

                                                 
13 Alternatively, we could have fixed PK by letting P K  be the aggregate price index for capital goods and drop 
equation (45). Then, the system with equations (21)-(38) plus (54) would have 19 equations (18 of which are 
independent) and 19 endogenous variables: Xi, Li, Ki, W, R, Y, Pi, Ci, I2, DKi, PKi and IR. The equation (45) would 
have to be dropped because fixing PK  amounts to fixing the value of P2 since the equation implies by (37) and (38) 
 

          P  =  P
( .a  +  .a )

 .2
K

1 21 2 22ε ε  

  

14 For a more realistic formulation taking into account the depreciation expenses on the existing capital stock and 
expected capital gains, see. Sayan, Hushak and Tweeten. 
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Multiplying both sides of (45a) by ε1, both sides of (45b) by ε2 and summing up the resulting 

equations yield equation (45). This equation can now be given the following interpretation: 

Since capital is both a factor of production and a store of value (representing accumulated 

savings of the past), the households owning the capital goods will be willing to rent the 

services of one unit of composite capital (worth $ PK) as a factor of production to the 

producers if the capital rental is at least as high as the market interest rate, IR.15 

IR =  R
PK1  (45a) 

IR =  R
PK2  (45b)

The Solution Procedure 
 
 As for the analytical solution of the system, we can write the downsized version in a 

similar way to what we did for the simpler Walrasian system, as follows: 

α βα α β. L .K  =  . P . L .K1
 ( -1)

1
 (1- )

2 2
 ( -1)

2
 (1- )β

 (48) 
(1- ). L .K  =  (1- ). P . L .K1

 
1
 -

2 2
 

2
 -α βα α β β

(49)

L =  L  +  L1 2  (50) 
K =  K  +  K1 2  (51)

1 1
 (1- )

2 2
 (1- ) 2

L .K
L .K

 =  .P
α α

β β
θ

 (52) 

IR =  (1- )
( .a  +  .a ).P

L .K
1 21 2 22 2

1 1
-α

ε ε
α α

(53)

where =γ
_
θ 1(1-mps)/[1-γ1(1-mps)]. So, the downsized system (48) through (53) is comprised 

of 6 equations in 6 endogenous variables: Li, Ki, IR and P2. When solved for Li, Ki and P1, 

equations (48) through (52) give the same solution for Li and Ki as in equations (19a) 

through (20b) except that θ now is given by γ1(1-mps). Upon substitution of solution values 

                                                 
15  In the microeconomic sense, IR is a "real" variable that is homogenous of o0 in R and PKi. This is the reason why 
IR is often referred to as the real interest rate in the CGE literature. In macroeconomics, this term is used for 
nominal (stated) rate minus the rate of inflation. In this latter sense, IR in the equation is the nominal rate. 
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for Li and Ki [from (19a) through (20b)] into (52), one can find the solution value for P2. 

Substitution of this value into equation (53) yields IR. 

The Effect of a Change in "mps" on the Interest Rate 

 Having obtained the solution values for endogenous variables, one can proceed with 

the investigation of the direction of the effect on the interest rate of a change in mps. To do 

this, we can first take the natural log of both sides of (53) to get 

where κ =(1-α)/(ε1.a21+ε2.a22). Totally differentiating both sides, we write 
ln ln ln ln ln IR =   -  P + .  L - .  K2 1 1κ α α (54)

where small case letters again indicate the percentage change in the variables denoted by 

respective capital letters. It can be shown using equations (19a)-(20b) that 

ir =  - p + .( l - k )2 1 1α  (55)

Substituting right hand side expressions from (43d) for p2, (56) for l1, and (57) for k1 into 

(55) yields 

1
1

1

2l   dL
L

 =  L
L

.d≡
θ
θ  (56) 

1
1

1

2k   dK
K

 =  K
K

.d  .≡
θ
θ  (57)

the right hand side of which is uncertain in sign. (58) can be rearranged into 

ir =  [ ( - )
K.L

.K .L  +  .( L
L

- K
K

)].d
2

1 2
2 2α β α θ

θ (58)

or, equivalently, 

ir =  1
K.L

.[( - ) .K .L  +  .( K .L - K .L )].d2
1 2 1 2 2 1α β α θ

θ  (58a)

where use is made of the fact that 

ir =  K . L
K.L

.[( - )  +  .( - )
.(1- )

].d1 2 2α β α β α
β α

θ
θ  (58b) 

 

1 2 2K .L  =  .1-
1-

.K .L
β
α

α
β  

1

(59)
ir =  K . L

K.L
.( - )  [1 -  . 1

(1- )
. 1
( - )

].d1 2 2α β α
β α α β

θ
θ (60)

the right hand side of which is still uncertain in sign because of the uncertainty about the 

sign of the term in brackets. Let's consider two possibilities i) α<ß, and ii)α>ß. 

 Under (i), the term in brackets will be positive implying that IR is positively related 

to . In other words, a rise in mps would lead to a fall in IR (since  falls as mps increases, as 
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pointed out earlier). Under (ii), on the other hand, the term in brackets will be negative since 

then each of the parametric terms in brackets would be greater than 1 (i.e., α/ß>1, 1/(1-α)>1, 

and 1/(α-ß)>1) making their product also exceed 1. Under these circumstances, an increase 

in  would lead to a fall in IR or equivalently, a rise in mps would lead to a rise in IR. 

   The comparative statics analysis, therefore, shows that whether an increase in mps 

causes the IR to go up or down depends on the relative magnitudes of α and ß. We take a 

closer look at the nature of this relationship below.16 

The Relationship between "α" and "ß" 

 
Proposition: 
 α>ß (α<ß) iff labor intensity of production in sector 1 is greater (smaller) than that in 

sector 2. Equivalently, α>ß (α<ß) iff production in sector 2 is more (less) capital 
intensive than that in sector 1. 

 
Proof: 
 
From (39) and (40), we write 

or equivalently, 

α
α

β
β(1- )

K
L

 =  
(1- )

.K
L

1

1

2

2  (61)

If L1/K1 > L2/K2 (i.e., labor intensity in sector 1 exceeds that in sector 2), then we must have 

1

1

2

2

L
K

 =  
(1- )

.(1- ). L
K

 .α
α

β
β  (62) 

implying that α>ß. 

α
α

β
β(1- )

.(1- ) >  1
 (63) 

 

                                                 
16 See Devarajan and Offerdal. Though the analysis there has entirely different purposes, their comparative statics 
results also depend on the relative capital intensities (capital-labor ratios) of sectoral production functions. 
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Concluding Remarks 
 
The discussion above indicates that it is possible to define an interest rate variable that can 

be incorporated into a Walrasian CGE model with no financial sector. The incorporation of 

such a variable does not appear to affect the fundamental structure of the model. 

Nonetheless, it remains useful for the following reasons. Firstly, it shows the implied change 

in IR that is consistent with the resulting relative price structure following an exogenous 

shock. Generalizing the argument, the incorporation of an endogenous interest rate 

formulation into a CGE model improves the informative capacity of the model in the 

empirical sense even when IR is not directly related to any other endogenous variable. 

Secondly, to the extent that the interest rate defined can be viewed as a proxy for the interest 

rates in the macroeconomic sense, the formulation may help establish a link between 

Walrasian and Keynesian models that are not necessarily compatible. It may thus prove to be 

especially useful in the applied analysis of the effects of macro shocks. To illustrate the idea, 

one can consider an area where the use of this formulation may increase the relevance of 

results from CGE simulation exercises: The analysis of the effects of budget deficits which 

has recently become the subject of a hot debate in the macroeconomics literature. The 

numerical techniques may be used to derive the direction of possible effects on IR of a 

change in, say, the budget position of the government. Hence, when the interest rate 

formulation is included, CGE analysis enables one to take a closer look at the sectoral effects 

of macroeconomic imbalances associated with a rise or a fall in the interest rate. Thus, 

utilization of the existing potential of CGE analysis to shed some light on such a dim area of 

the literature via what amounts to a relatively small modification in the model structure 

seems like a good idea. 

Another justification for the inclusion of an interest rate formulation is that such a 

formulation can provide additional insights into the role of the sectoral production technol-

ogies (or the assumptions concerning these technologies) in transmission of the effects of 

exogenous shocks throughout the economy. This is especially important in the context of a 

multisectoral model where sector aggregation issues present additional difficulties.17

                                                 
17  In such a model, output of each sector may be usable both as a final consumption good and as an investment 
good. The share of the part of output usable for final consumption varies from sector to sector, however, depending 
upon the aggregation scheme used. 
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